Оптика что это


Оптика - это... Что такое Оптика?

Таблица «Оптика» из энциклопедии 1728 г.

О́птика (от др.-греч. ὀπτική, optike' появление или взгляд) — раздел физики, рассматривающий явления, связанные с распространением электромагнитных волн преимущественно видимого и близких к нему диапазонов (инфракрасное и ультрафиолетовое излучение). Оптика описывает свойства света и объясняет связанные с ним явления. Методы оптики используются во многих прикладных дисциплинах, включая электротехнику, физику, медицину (в частности, офтальмологию). В этих, а также в междисциплинарных сферах широко применяются достижения прикладной оптики.

Вместе с точной механикой оптика является основой оптико-механической промышленности.

Природа света

Оптика оказалась одним из первых разделов физики, где проявилась ограниченность классических представлений о природе. Была установлена двойственная природа света:

  • Корпускулярная теория света, берущая начало от Ньютона, рассматривает его как поток частиц — квантов света или фотонов. В соответствии с идеей Планка любое излучение происходит дискретно, причём минимальная порция энергии (энергия фотона) имеет величину , где частота соответствует частоте излучённого света, а есть постоянная Планка. Использование представлений о свете, как потоке частиц, объясняет явление фотоэффекта и закономерности теории излучения.
  • Волновая теория света, берущая начало от Гюйгенса, рассматривает свет как совокупность поперечных монохроматических электромагнитных волн, а наблюдаемые оптические эффекты как результат сложения (интерференции) этих волн. При этом считается, что в отсутствие перехода энергии излучения в другие виды энергии, эти волны не влияют друг на друга в том смысле, что, вызвавшая в некоторой области пространства интерференционные явления, волна продолжает распространяться дальше без изменения своих характеристик. Волновая теория электромагнитного излучения нашла своё теоретическое описание в работах Максвелла в форме уравнений Максвелла. Использование представления о свете, как о волне, позволяет объяснить явления, связанные с интерференцией и дифракцией, в том числе структуру светового поля (построение изображений и голографию).

Характеристики света

Длина световой волны зависит от скорости распространения волны в среде и связана с нею и частотой соотношением:

где — показатель преломления среды. В общем случае показатель преломления среды является функцией длины волны: . Зависимость показателя преломления от длины волны проявляется в виде явления дисперсии света.

Характеристиками света являются:

Скорость света

Универсальным понятием в физике является скорость света . Её значение в вакууме представляет собой не только предельную скорость распространения электромагнитных колебаний любой частоты, но и вообще предельную скорость распространения информации или любого воздействия на материальные объекты. При распространении света в различных средах фазовая скорость света обычно уменьшается: , где есть показатель преломления среды, характеризующий её оптические свойства и зависящий от частоты света: . В области аномальной дисперсии света показатель преломления может быть и меньше единицы, а фазовая скорость света больше . Последнее утверждение не входит в противоречие с теорией относительности, поскольку передача информации с помощью света происходит не с фазовой, а, как правило, с групповой скоростью.

Оптика других диапазонов

Электромагнитный спектр принято делить на радиоволны, инфракрасное, видимое, ультрафиолетовое, рентгеновское и гамма-излучения. Эти участки спектра различаются не по своей природе, а по способу генерации и приёма излучения. Поэтому между ними нет резких переходов, сами участки перекрываются, а границы между ними условны.

Волновые и квантовые закономерности являются общими для всего спектра электромагнитного излучения. В зависимости от длины волны, на первый план выступают разные явления, разные методы исследования и разные практические применения. Поэтому на оптику нельзя смотреть как на замкнутую дисциплину, изучающую только видимую область спектра, отделённую от других областей чёткими границами. Закономерности и результаты, найденные в этих других областях, могут оказаться применимыми в видимой области спектра и наоборот.

Аналогичные явления встречаются в распространении рентгеновского излучения и радиоволн, в микроволновых печах и т. п. Оптика, таким образом, может рассматриваться как раздел электромагнетизма. Некоторые оптические явления зависят от квантовой природы света, что связывает некоторые области оптики с квантовой механикой. Практически, огромное большинство оптических явлений могут рассматриваться, как электромагнитные колебания, описанные Уравнениями Максвелла.

Разделы оптики

Классическая оптика

Основная статья: Классическая оптика

До появления квантовой оптики оптика в целом основывалась на классическом электромагнетизме. Классическая оптика делится на две главные ветви: геометрическая оптика и физическая оптика.

Геометрическая оптика

Основная статья: Геометрическая оптика

Геометрическая оптика или оптика луча, описывает распространение света термином луч. Работы Гюйгенса «Волновая теория света», которые были написаны под влиянием фундаментальных работ Ньютона, и вошли потом в «Оптику», оказали большое влияние на современников. Действительно, будучи приверженцем теории цветов Гука, он после работ Ньютона, восхищаясь их экспериментальной стороной, но не разделяя его теоретической интерпретации, пришёл к выводу, что «явление окрашивания остаётся ещё весьма таинственным из-за трудности объяснения этого разнообразия цветов с помощью какого-либо физического механизма». Поэтому он счёл наиболее целесообразным вообще не рассматривать вопроса о цветах в своём трактате.

В своем небольшом трактате первым он рассмотрел прямолинейное распространение света, во второй части — отражение, в третьей — преломление, в четвёртой — атмосферную рефракцию, в пятой — двойное лучепреломление и в шестой — формы линз.

Неудовлетворительное объяснение прямолинейного распространения света Гюйгенс возместил блестящим объяснением с помощью своего механизма частичного отражения, преломления и полного внутреннего отражения — явлений, интерпретация которых вынудила Ньютона усложнять свою теорию, нагромождая одну теорию на другую. По существу, эти объяснения Гюйгенса и сейчас приводятся во всех учебниках. Новая теория обладала также тем преимуществом, что для объяснения преломления она в соответствии со здравым смыслом требовала меньшей скорости в более плотной среде.

«Луч» в геометрической оптике — абстрактный геометрический объект, перпендикулярный фронту импульса фактических оптических волн. Геометрическая оптика описывает правила прохождения лучей через оптическую систему.

Приняв это абстрактное понятие и связанные с ним правила, мы существенно упрощаем задачу оптики, но не в состоянии объяснить много важных оптических эффектов, например дифракцию и поляризацию.

Параксиальное приближение

Основная статья: Параксиальное приближение

Следующее упрощение в геометрической оптике — параксиальное приближение, или «приближение малых углов». Математически поведение луча становится линейным, позволяя представить оптические компоненты простыми матрицами. Применение методов Гауссовской оптики позволяет найти свойства первого порядка оптических систем.

Гауссовское распространение луча — расширение параксиальной оптики, описывающее более точную модель поведения лучей. Используя параксиальное приближение и явление дифракции, данный набор методов описывает расширение светового пучка с расстоянием и минимальный размер светового пятна, в которое может быть сосредоточен световой пучок. Тем самым эта модель является промежуточной между геометрической и физической оптикой.

Физическая оптика

Основная статья: Физическая оптика

Наглядное изображение дисперсии света в призме

Физическая оптика или оптика волны основывается на принципе Гюйгенса и моделирует распространение сложных фронтов импульса через оптические системы, включая и амплитуду и фазу (волны) волны. Этот раздел оптики объясняет дифракцию, интерференцию, эффекты поляризации, аберрацию и природу других сложных эффектов.

В этом разделе оптики также используются приближения, а не полная электромагнитная модель распространения света. Однако в простых случаях, а по мере роста доступных вычислительных мощностей и в более сложных, становится возможным полный расчёт по точной теории.

Современная оптика

Современная оптика охватывает области оптической науки и разработок, которые стали популярными в XX столетии. Эти области оптической науки в основном касаются электромагнитных или квантовых свойств света, но включают и другие области.

Физиологическая оптика

Основная статья: Зрительное восприятие

Физиологическая оптика — междисциплинарная наука о зрительном восприятии света. Она объединяет сведения по биофизике, биохимии и психологии зрительного восприятия.

Рентгеновская оптика

Основная статья: Рентгеновская оптика

Рентгеновская оптика — отрасль прикладной оптики, изучающая процессы распространения рентгеновских лучей в средах, а также разрабатывающая элементы для рентгеновских приборов. Рентгеновская оптика в отличие от обычной рассматривает электромагнитные волны в диапазоне длин волн рентгеновского 10−4 до 100 Å (от 10−14 до 10−8 м) и гамма-излучений < 10−4 Å.

Темы, связанные с современной оптикой

Примечания

  1. ↑ Используется в приближении геометрической оптики

  • Б. М. Яворский и А. А. Детлаф Справочник по физике. — М.: Наука, 1971.
  • Раздел по оптике на сайте «Вся Физика».

dic.academic.ru

Что такое оптика

В обыденной речи слово «свет» мы используем в самых разных значениях: свет мой, солнышко, скажи; ученье – свет, а неученье – тьма. В физике этот термин имеет более определённое значение. Свет или видимое излучение – это электромагнитные волны, вызывающие у человека зрительные ощущения. Такой способностью обладают волны только с определёнными частотами: 4·1014 – 8·1014 Гц (см. § 11-е). Однако, например, пчёлы способны видеть ультрафиолет из диапазона 8·1014 – 300·1014 Гц. А специальные приборы «ночного видения» воспринимают окружающий мир благодаря его инфракрасному излучению с частотой менее 4·1014 Гц.

Три названных вида излучения обладают многими схожими свойствами. Поэтому видимое, ультрафиолетовое и инфракрасное излучения объединяют общим названием оптические излучения, а раздел физики, занимающийся их изучением, называют оптикой.

По способу происхождения излучения все источники света разделяют на тепловые и люминесцентные. Тепловые источники имеют высокую температуру. Например, всякое тело, нагретое выше 500 °С, испускает свет красного цвета, выше 1000 °С – жёлтого, выше 1500 °С – белого. Взгляните на фото – по цвету расплавленной стали можно определить её температуру.

В отличие от тепловых, люминесцентные источники света имеют невысокую температуру, например, дисплей мобильного телефона, экран телевизора, насекомые-светлячки, а также специальные твёрдые и жидкие вещества (см. фото). Причины, по которым перечисленные тела испускают «холодный свет», будут обсуждаться нами в следующей теме «Введение в квантовую физику» (см. § 15-в).

Обычно источники испускают свет одновременно во всех направлениях, как, например, свеча или лампа. Но если её закрыть непрозрачным корпусом с отверстием, то свет будет распространяться в виде светового пучка, расширяющегося по мере удаления от источника. Например, на фотографии справа вы видите пучок света от шахтёрского фонаря.

Строго говоря, пучки света невидимы. Однако на обеих фотографиях на этой странице мы явственно «их» различаем. Почему? Дело в том, что воздух в комнате, а, тем более, в шахте, всегда содержит мелкие частицы влаги и пыли. Ярко освещённые, они сливаются в полупрозрачную пелену: желтоватую – если свет жёлтый, розовую – если свет красный и голубую – если свет синий. Если на пучок посмотреть вблизи, то можно разглядеть отдельные пылинки, а промежутки между ними будут тёмными.

Как вы думаете, оказывают ли влияние друг на друга пересекающиеся пучки света? Чтобы ответить на вопрос, проделаем опыт. Возьмём два проектора, расположив их так, чтобы световые пучки пересекались. Вы видите, что синие лучи правого проектора проходят сквозь красные лучи левого, однако это не приводит к искажениям на экране: ни по цвету, ни по очертаниям проецируемых объектов.

Итак, закон независимости распространения света утверждает, что световые пучки, пересекаясь, не влияют друг на друга. Этот закон справедлив для световых пучков небольшой интенсивности (к ним относятся свет большинства окружающих нас источников). Пучки света, например, от мощных лазеров промышленного или научного назначения, могут оказывать влияние друг на друга: для них закон независимости распространения света не всегда будет справедливым.

Page 2

Установим соответствие между геометрическим и алгебраическим способами описания характеристик изображений, даваемых линзами. Сделаем чертёж по рисунку со статуэткой в предыдущем параграфе.

Поясним наши обозначения. Фигура AB – статуэтка, которая находится на расстоянии d от тонкой собирающей линзы с центром в точке О. Правее располагают экран, на котором A’B’ – изображение статуэтки, наблюдаемое на расстоянии f от центра линзы. Точками F обозначены главные фокусы, а точками 2F – двойные фокусные расстояния.

Почему мы построили лучи именно так? От головы статуэтки параллельно главной оптической оси идёт луч BC, который при прохождении линзы преломляется и проходит через её главный фокус F, создавая луч CB’. Каждая точка предмета испускает множество лучей. Однако при этом луч BO, идущий через центр линзы, сохраняет направление из-за симметрии линзы. Пересечение преломлённого луча и луча, сохранившего направление, даёт точку, где будет изображение головы статуэтки. Луч AO, проходящий через точку О и сохраняющий своё направление, позволяет нам понять положение точки A’, где будет изображение ног статуэтки – на пересечении с вертикальной линией от головы.

Предлагаем вам самостоятельно доказать подобие треугольников OAB и OA’B’, а также OFC и FA’B’. Из подобия двух пар треугольников, а также из равенства OC=AB, имеем:

Последняя формула предсказывает соотношение между фокусным расстоянием собирающей линзы, расстоянием от предмета до линзы и расстоянием от линзы до точки наблюдения изображения, в которой оно будет отчётливым. Чтобы эта формула была применима и для рассевающей линзы, вводят физическую величину оптическая сила линзы.

Поскольку фокус собирающей линзы всегда действительный, а фокус рассеивающей линзы всегда мнимый, оптическую силу определяют так:

Другими словами, оптическая сила линзы равна обратному значению её фокусного расстояния, взятому с «+», если линза собирающая, и взятому с «–», если линза рассеивающая. Единица оптической силы – диоптрия (1 дптр = 1/м). С учётом введённого обозначения получим:

D – оптическая сила линзы, дптр d – расстояние от предмета до линзы, м

f – расстояние от линзы до изображения, м

Это равенство называют формулой тонкой линзы. Опыты по её проверке показывают, что она справедлива только в том случае, если линза относительно тонкая, то есть её толщина в средней части мала по сравнению с расстояниями d и f. Кроме того, если изображение, даваемое линзой, мнимое, перед величиной f необходимо использовать знак «–».

Задача. Линзу с оптической силой 2,5 дптр поместили на расстоянии 0,5 м от ярко освещённого предмета. На каком расстоянии следует поместить экран, чтобы увидеть на нём чёткое изображение предмета?

Решение. Поскольку оптическая сила линзы положительна, следовательно, линза является собирающей. Определим её фокусное расстояние:

F = 1/D = 1 : 2,5 дптр = 0,4 м,   что больше, чем F.

Поскольку F < d < 2F , линза даст действительное изображение, то есть его можно увидеть на экране (см. таблицу § 14-е). Вычисляем:

Ответ: экран необходимо поместить на расстоянии 2х метров от линзы. Примечание: задача решена алгебраически, однако мы получим тот же результат и геометрическим путём, приложив к чертежу линейку.

Page 3

В предыдущем параграфе мы изучили распространение света в одной и той же оптической среде. Теперь перейдём к изучению явлений, связанных с распространением света на границе раздела двух сред.

Проделаем опыт. На зеркало, лежащее на столе, поставим полуоткрытую книгу и слева направим пучок света (см. рисунок). В темноте мы увидим падающий и отражённый пучки света. Накроем зеркало листом бумаги. Теперь мы будем видеть падающий пучок, а отражённого пучка не будет. Получается, что свет не отражается от бумаги?

Приглядимся к рисункам внимательнее. Заметьте, когда свет падает на открытое зеркало, книга освещена очень слабо. Но когда свет падает на лист бумаги, книга освещается гораздо ярче, особенно в нижней части. Следовательно, книгу освещают лучи, отражённые бумагой.

Как следует из этого опыта, при отражении света возможны два варианта. 1. Пучок света, падающий на поверхность, отражается ею также в виде пучка (см. левый чертёж). Такое явление называют зеркальным отражением. 2. Пучок света, падающий на поверхность, отражается ею во множестве направлений. Такое явление называют рассеянным отражением или просто рассеянием света (см. правый чертёж).

Зеркальное отражение возникает на очень гладких поверхностях, их называют зеркальными (например, ровное стекло, поверхность воды на озере в безветренную погоду). Если же поверхности шероховатые, их называют матовыми, и они обязательно будут рассеивать свет. Это мы и наблюдали, накрывая зеркало бумагой. Она отражала свет, рассеивая его по всевозможным направлениям, в том числе и на книгу, освещая её.

Закон отражения света. Чтобы сформулировать закон, которому подчиняется отражение света, введём несколько определений.

Угол падения – угол между падающим лучом и перпендикуляром к отражающей поверхности в точке излома луча (a). Угол отражения – угол между отражённым лучом и перпендикуляром к отражающей поверхности в точке излома луча (b).

При отражении света всегда выполняются две закономерности, вместе составляющие закон отражения света: а) луч падающий, луч отражённый и перпендикуляр к отражающей поверхности в точке излома луча лежат в одной плоскости; б) угол падения равен углу отражения.

Каждое из утверждений закона отражения света подтверждается многочисленными опытами, одним из которых служит опыт с зеркалом, описанный в начале параграфа. С помощью транспортира вы легко убедитесь, что угол падения равен углу отражения. А, подняв бумагу с зеркала, легко увидеть, что падающий и отражённый лучи вместе с перпендикуляром к зеркалу в точке излома луча лежат в одной плоскости – листа бумаги, если его расположить перпендикулярно зеркалу.

Закон отражения является справедливым как для зеркального, так и для рассеянного отражения света. Обратимся ещё раз к чертежам на предыдущей странице. Несмотря на кажущуюся беспорядочность в отражении лучей на правом чертеже, они расположены так, что углы отражения равны углам падения.

Закон отражения света выполняется не только в воздухе, но и в вакууме, а также внутри жидкостей и твёрдых тел, которые прозрачны для оптических излучений. Например, надев маску для ныряния и сев на дно мелководного озера или реки, в солнечный день мы увидим отражение дна или проплывающих мимо рыб от поверхности воды под водой.

Page 4

В предыдущих параграфах мы изучили явление отражения света. Познакомимся теперь со вторым явлением, при котором лучи меняют направление своего распространения. Это явление – преломление света на границе раздела двух сред. Взгляните на чертежи с лучами и аквариумом в § 14-б. Луч, выходящий из лазера, был прямолинейным, но, дойдя до стеклянной стенки аквариума, луч изменил направление – преломился.

Преломлением света называют изменение направления луча на границе раздела двух сред, при котором свет переходит во вторую среду (сравните с отражением). Например, на рисунке мы изобразили примеры преломления светового луча на границах воздуха и воды, воздуха и стекла, воды и стекла.

Из сравнения левых чертежей следует, что пара сред «воздух-стекло» преломляет свет сильнее, чем пара сред «воздух-вода». Из сравнения правых чертежей видно, что при переходе из воздуха в стекло свет преломляется сильнее, чем при переходе из воды в стекло. То есть, пары сред, прозрачные для оптических излучений, обладают различной преломляющей способностью, характеризующейся относительным показателем преломления. Он вычисляется по формуле, указанной на следующей странице, поэтому может быть измерен экспериментально. Если в качестве первой среды выбран вакуум, то получаются значения:

Вакуум1Вода1,33
Воздух1,0003Глицерин1,47
Лёд1,31Стекло1,5 – 2,0

Эти значения измерены при 20 °С для жёлтого света. При другой температуре или другом цвете света показатели будут иными (см. § 14-з). При качественном рассмотрении таблицы отметим: чем больше показатель преломления отличается от единицы, тем больше угол, на который отклоняется луч, переходя из вакуума в среду. Поскольку показатель преломления воздуха почти не отличается от единицы, влияние воздуха на распространение света практически незаметно.

Закон преломления света. Чтобы рассмотреть этот закон, введём определения. Угол между падающим лучом и перпендикуляром к границе раздела двух сред в точке излома луча назовём углом падения (a). Аналогично, угол между преломлённым лучом и перпендикуляром к границе раздела двух сред в точке излома луча назовём углом преломления (g).

При преломлении света всегда выполняются закономерности, составляющие закон преломления света: 1. Луч падающий, луч преломлённый и перпендикуляр к границе раздела сред в точке излома луча лежат в одной плоскости. 2. Отношение синуса угла падения к синусу угла преломления – постоянная величина, не зависящая от углов:

n – относительный показатель преломления a – угол падения луча

g – угол преломления луча

Применяют и качественную трактовку закона преломления света: при переходе света в оптически более плотную среду луч отклоняется к перпендикуляру к границе раздела сред. И наоборот.

Принцип обратимости световых лучей. При отражении или преломлении света падающий и отражённый лучи всегда можно поменять местами. Это означает, что ход лучей не изменится, если изменить их направления на противоположные. Многочисленные опыты подтверждают: при этом «траектория» хода лучей не меняется (см. чертёж).

Page 5

Лупа. Это двояковыпуклая линза, предназначенная для рассматривания мелких предметов. Лупу всегда придвигают к предмету так, чтобы он располагался между ней и её фокусом. В этом случае лупа даёт прямое и увеличенное, хотя и при этом мнимое, изображение предмета.

Лучи, испущенные предметом и прошедшие через лупу, расходятся (см. чертёж). От кончика пламени мы провели «красные» лучи. Один – параллельно главной оптической оси линзы, второй – через её центр. Первый луч после преломления в линзе пройдёт через её фокус, а второй луч не изменит направление распространения. От основания свечи отходят два «синих» луча. Они проходят так же, как и красные – параллельно главной оптической оси линзы и через её оптический центр. И «красные», и «синие» лучи являются расходящимися. Поэтому лупа не может создавать изображений на экране; их нужно наблюдать только оптическим прибором: глазом, фотоаппаратом и т.п.

Проектор. В отличие от лупы, этот прибор предназначен для получения действительных изображений, которые можно спроецировать на экран и сделать видимыми многим зрителям одновременно (см. чертёж). Свет лампы 1 при помощи вогнутого зеркала 2 направляется на слайд 3. Он расположен между фокусом и двойным фокусом собирающей линзы 4. Поэтому на экране 5 получается увеличенное действительное изображение.

Обратите внимание: красные лучи от верхней части слайда попадают в нижнюю часть экрана. И наоборот, синие лучи от нижней части слайда попадают в верхнюю часть экрана. Поэтому изображение на слайдах должно располагаться «вверх ногами».

Глаз. Орган зрения человека является сложным оптическим прибором. Основные части глаза: 1 – склера (плотная наружная оболочка), 2 – роговица (передняя более выпуклая прозрачная часть склеры), 3 – радужная оболочка, 4 – хрусталик, 5 – мышца, 6 – сетчатка (светочувствительная внутренняя задняя поверхность склеры), 7 – зрительный нерв.

Свет от рассматриваемого предмета, попадая в глаз, проходит через хрусталик. Он является собирающей линзой, поэтому на сетчатке образуется действительное изображение предмета. Светлые и тёмные части, из которых оно образовано, по-разному воздействуют на нервные окончания, расположенные на сетчатке. Эти воздействия по зрительному нерву попадают в головной мозг, который «переворачивает» изображение и распознаёт его.

Одним из особенных свойств хрусталика является его упругость. Если окружающие его мышцы напрягаются, то хрусталик растягивается и становится менее выпуклым. При этом его преломляющая способность уменьшается, и мы можем чётко видеть более удалённые предметы.

Очки. Они предназначены для исправления таких дефектов зрения, как дальнозоркость и близорукость. Близорукий глаз хорошо видит только близкие предметы. Их чёткие изображения получаются на сетчатке глаза (чертёж «а»). Если же предмет далеко, то его чёткое изображение получается перед сетчаткой (чертёж «б»).

Для исправления близорукости поместим перед глазом рассеивающую линзу (чертёж «в»). Она сделает пучок лучей от предмета более расходящимся. В результате он станет похожим на тот пучок, который попадал в глаз в случае «а». Следовательно, изображения окажутся на сетчатке, и близорукий человек отчетливо увидит далёкие предметы. Для дальнозорких людей нужны очки с собирающими линзами.

questions-physics.ru

оптика - это... Что такое оптика?

  • оптика — оптика, и …   Русский орфографический словарь

  • ОПТИКА — (греч. optike наука о зрительных восприятиях, от optos видимый, зримый), раздел физики, в к ром изучаются оптическое излучение (свет), процессы его распространения и явления, наблюдаемые при вз ствии света и в ва. Оптич. излучение представляет… …   Физическая энциклопедия

  • ОПТИКА — (греч. optike, от optomai вижу). Учение о свете и действии его на глаз. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ОПТИКА греч. optike, от optomai, вижу. Наука о распространении света и действии его на глаз.… …   Словарь иностранных слов русского языка

  • оптика — и, ж. optique f. < optike наука о зрении. 1. устар. Раек (род панорамы). Мак. 1908. Иль в стекла оптики картинные места Смотрю моих усадеб. Державин Евгению. Особенность зрения, восприятия чего л. Оптика глаз моих ограничена; в потемках все… …   Исторический словарь галлицизмов русского языка

  • ОПТИКА — ОПТИКА, раздел физики, в котором исследуются процессы излучения света, распространения его в различных средах и взаимодействия его с веществом. Оптика изучает видимую часть спектра электромагнитных волн и примыкающие к ней ультрафиолетовую… …   Современная энциклопедия

  • Оптика — ОПТИКА, раздел физики, в котором исследуются процессы излучения света, распространения его в различных средах и взаимодействия его с веществом. Оптика изучает видимую часть спектра электромагнитных волн и примыкающие к ней ультрафиолетовую… …   Иллюстрированный энциклопедический словарь

  • ОПТИКА — ОПТИКА, раздел физики, исследующий свет и его свойства. Основные аспекты включают физическую природу СВЕТА, охватывающую как волны, так и частицы (ФОТОНЫ), ОТРАЖЕНИЕ, РЕФРАКЦИЮ, ПОЛЯРИЗАЦИЮ света и его передачу через различные среды. Оптика… …   Научно-технический энциклопедический словарь

  • ОПТИКА — ОПТИКА, оптики, мн. нет, жен. (греч. optiko). 1. Отдел физики, наука, изучающая явления и свойства света. Теоретическая оптика. Прикладная оптика. 2. собир. Приборы и инструменты, действие которых основано на законах этой науки (спец.). Толковый… …   Толковый словарь Ушакова

  • ОПТИКА — (от греч. optike наука о зрительных восприятиях) раздел физики, в котором исследуются процессы излучения света, его распространение в различных средах и взаимодействие света c веществом. Оптика изучает широкую область спектра электромагнитных… …   Большой Энциклопедический словарь

  • ОПТИКА — ОПТИКА, и, жен. 1. Раздел физики, изучающий процессы излучения света, его распространения и взаимодействия с веществом. 2. собир. Приборы и инструменты, действие к рых основано на законах этой науки. • Волоконная оптика (спец.) раздел оптики,… …   Толковый словарь Ожегова

  • ОПТИКА — (от греч. opsis зрение), учение о свете, составная часть физики. О. входит частью в область геофизики (атмосферная О., оптика морей и т. д.), частью в область физиологии (физиол.О.). По своему основному физ. содержанию О. разделяется на физи… …   Большая медицинская энциклопедия

dic.academic.ru

ОПТИКА - это... Что такое ОПТИКА?

  • оптика — оптика, и …   Русский орфографический словарь

  • ОПТИКА — (греч. optike наука о зрительных восприятиях, от optos видимый, зримый), раздел физики, в к ром изучаются оптическое излучение (свет), процессы его распространения и явления, наблюдаемые при вз ствии света и в ва. Оптич. излучение представляет… …   Физическая энциклопедия

  • ОПТИКА — (греч. optike, от optomai вижу). Учение о свете и действии его на глаз. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ОПТИКА греч. optike, от optomai, вижу. Наука о распространении света и действии его на глаз.… …   Словарь иностранных слов русского языка

  • оптика — и, ж. optique f. < optike наука о зрении. 1. устар. Раек (род панорамы). Мак. 1908. Иль в стекла оптики картинные места Смотрю моих усадеб. Державин Евгению. Особенность зрения, восприятия чего л. Оптика глаз моих ограничена; в потемках все… …   Исторический словарь галлицизмов русского языка

  • ОПТИКА — ОПТИКА, раздел физики, в котором исследуются процессы излучения света, распространения его в различных средах и взаимодействия его с веществом. Оптика изучает видимую часть спектра электромагнитных волн и примыкающие к ней ультрафиолетовую… …   Современная энциклопедия

  • Оптика — ОПТИКА, раздел физики, в котором исследуются процессы излучения света, распространения его в различных средах и взаимодействия его с веществом. Оптика изучает видимую часть спектра электромагнитных волн и примыкающие к ней ультрафиолетовую… …   Иллюстрированный энциклопедический словарь

  • ОПТИКА — ОПТИКА, раздел физики, исследующий свет и его свойства. Основные аспекты включают физическую природу СВЕТА, охватывающую как волны, так и частицы (ФОТОНЫ), ОТРАЖЕНИЕ, РЕФРАКЦИЮ, ПОЛЯРИЗАЦИЮ света и его передачу через различные среды. Оптика… …   Научно-технический энциклопедический словарь

  • ОПТИКА — (от греч. optike наука о зрительных восприятиях) раздел физики, в котором исследуются процессы излучения света, его распространение в различных средах и взаимодействие света c веществом. Оптика изучает широкую область спектра электромагнитных… …   Большой Энциклопедический словарь

  • ОПТИКА — ОПТИКА, и, жен. 1. Раздел физики, изучающий процессы излучения света, его распространения и взаимодействия с веществом. 2. собир. Приборы и инструменты, действие к рых основано на законах этой науки. • Волоконная оптика (спец.) раздел оптики,… …   Толковый словарь Ожегова

  • ОПТИКА — (от греч. opsis зрение), учение о свете, составная часть физики. О. входит частью в область геофизики (атмосферная О., оптика морей и т. д.), частью в область физиологии (физиол.О.). По своему основному физ. содержанию О. разделяется на физи… …   Большая медицинская энциклопедия

dic.academic.ru


Смотрите также

 

 

 

 Сохранить статью у себя на  страничке в : 

Видео прикол: - ЛУЧШИЕ ПРИКОЛЫ #22 ВидеоТакоФил - Splinter Cell: Blacklist #9: "Сейф для людей"Наконечники турбинныеTReND